

Supporting Information

Supplementary tables

This appendix was part of the submitted manuscript and has been peer reviewed. It is posted as supplied by the authors.

Appendix to: An YK, Prince D, Gardiner F, et al. Faecal calprotectin testing for identifying patients with organic gastrointestinal disease: systematic review and meta-analysis. *Med J Aust* 2019; doi: 10.5694/mja2.50384.

Table 1. Studies reporting faecal calprotectin testing for distinguishing between organic disease and functional gastrointestinal disorders

Study	Faecal calprotectin cut-off (µg/g)	TP	FP	FN	TN	Sensitivity	Specificity	PPV	NPV	Disease prevalence
Included in statistical ana	alysis									
Limburg 2000	100	24	14	5	67	83%	83%	63%	93%	26.4% (18.4–35.6%)
Carrocio 2003	50 (adults)	19	8	11	32	63%	80%	70%	74%	42.9% (31.1–55.2%)
Carrocio 2003	50 (children)	25	1	10	14	71%	93%	96%	58%	70.0% (55.4–82.1%)
D'Inca 2007	50	13	2	11	41	54%	95%	87%	79%	35.8% (24.5–48.5%)
Otten 2008	50	22	12	1	79	96%	87%	65%	99%	20.2% (13.2–28.7%)
El-Badry 2010	50	19	4	0	26	100%	87%	83%	100%	38.8% (25.2–53.8%)
Kok 2012	50	52	152	10	168	84%	48%	24%	94%	16.2% (12.7–20.3%)
Burri 2012	50	112	13	31	249	78%	95%	90%	89%	35.3% (30.6-40.2%)
Pavlidis 2013	50	77	200	17	668	82%	77%	28%	98%	9.8% (8.0-11.8%)
Angulo 2015	50	123	80	9	32	93%	29%	61%	78%	54.1% (47.6–60.5%)
Banerjee 2015	50	19	39	2	59	90%	60%	33%	97%	17.6% (11.3–25.7%)
Turvill 2016	100	23	44	3	192	88%	81%	34%	98%	9.9% (6.6-14.2%)
Högberg 2017	50	20	89	6	258	77%	74%	18%	98%	7.0% (4.6–10.0%)
Conroy 2018	50	21	127	6	256	78%	67%	14%	98%	6.6% (4.4-9.4%)
Walker 2018	100	64	69	36	620	64%	90%	49%	95%	12.7% (10.4–15.2%)
Turvill 2018	100	73	29	5	803	94%	92%	51%	99%	8.2% (6.5–10.1%)
Not included in statistica	l analysis*									
Carrocio 2003	100 (adults)	13	3	17	37	43%	93%	81%	69%	42.9% (31.1–55.2%)
Carrocio 2003	100 (children)	18	1	17	14	51%	93%	95%	45%	70.0% (55.4–82.1%)
El-Badry 2010	100	15	0	4	30	79%	100%	100%	88%	38.8% (25.2–53.8%)
Pavlidis 2013	100	73	78	21	790	78%	91%	48%	97%	9.8% (8.0-11.8%)
Angulo 2015	100	100	53	32	59	76%	53%	65%	65%	54.1% (47.6–60.5%)
Banerjee 2015	100	14	18	7	80	67%	82%	44%	92%	17.6% (11.3–25.7%)
Högberg 2017	100	12	46	14	301	46%	87%	21%	96%	7.0% (4.6-10.0%)

TP = true positive; FP = false positive; TN = true negative; FN = false negative; PPV = positive predictive value; NPV = negative predictive value.

^{*} When studies used both 50 and 100 μ g/g cut-off values for the same patient, we only used the 50 μ g/g value for our analysis.

Table 2. Studies reporting faecal calprotectin testing for distinguishing between inflammatory bowel disease and functional gastrointestinal disorders

Otracka	Faecal calprotectin	TD	-FD			O Mile de -	On a stiff street	DDV.	MDV	D'
Study	cut-off (µg/g)	TP	FP	FN	TN	Sensitivity	Specificity	PPV	NPV	Disease prevalence
Included in statistical analys	sis									
Limburg 2000	100	15	23	1	71	94%	76%	39%	99%	14.6% (8.6–22.5%)
D'Inca 2007	50	2	13	0	52	100%	80%	13%	100%	3.0% (0.36-10.4%)
Damms 2008	50	18	47	0	75	100%	61%	28%	100%	12.9% (7.8–19.6%)
Schoepfer 2008	50	53	0	11	30	83%	100%	100%	73%	68.1% (57.7–77.3%)
Angulo 2015	50	68	80	0	32	100%	29%	46%	100%	37.8% (30.7–45.3%)
Dhaliwal 2015	50	115	18	33	126	78%	88%	87%	79%	50.7% (44.8–56.6%)
Banerjee 2015	50	12	39	0	59	100%	60%	24%	100%	10.9% (5.8–18.3%)
Högberg 2017	50	4	105	0	264	100%	72%	4%	100%	1.1% (0.29–2.7%)
Conroy 2018	50	4	144	3	259	57%	64%	3%	99%	1.7% (0.69–3.5%)
Walker 2018	100	43	89	7	650	86%	88%	33%	99%	6.3% (4.7-8.3%)
Not included in statistical analysis*										
Angulo 2015	100	60	49	8	63	88%	56%	55%	89%	37.8% (30.7–45.3%)
Dhaliwal 2015	100	113	4	35	140	76%	97%	97%	80%	50.7% (44.8–56.6%)
Banerjee 2015	100	11	18	1	80	92%	82%	38%	99%	10.9% (5.8–18.3%)
Högberg 2017	100	3	55	1	314	75%	85%	5%	100%	1.1% (0.29–2.7%)

TP = true positive; FP = false positive; TN = true negative; FN = false negative; PPV = positive predictive value; NPV = negative predictive value.

^{*} When studies used both 50 and 100 μ g/g cut-off values for the same patient, we only used the 50 μ g/g value for our analysis.