

Supporting Information

Supplementary formula

This appendix was part of the submitted manuscript and has been peer reviewed. It is posted as supplied by the authors.

Appendix to: Heriot GS, Jamrozik E. Not in my backyard: COVID-19 vaccine development requires someone to be infected somewhere. *Med J Aust* 2021; doi: 10.5694/mja2.50930.

Relationship between statistical power, trial group size and vaccine efficacy.

$$n = \frac{(Z_{1-\alpha} + Z_{\beta})^2 [p\varepsilon_m'(1-p\varepsilon_m') + p\varepsilon_v'(1-p\varepsilon_v')]}{(p\varepsilon_m' - p\varepsilon_v')^2}$$

Where: Z is the cumulative distribution function of a standardised normal deviate

 α is the one-tailed type 1 error rate

 β is the type 2 error rate

p is the probability of infection in the trial population

arepsilon is the relative risk reduction of infection from vaccination (vaccine efficacy)

 $arepsilon_m'$ is the complement of the minimum desirable vaccine efficacy

 $arepsilon_{v}'$ is the complement of the true candidate vaccine efficacy